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∗ LAAS-CNRS, Université de Toulouse, UPS, F-31077 Toulouse,
France. (e-mail: emontseny@laas.fr)
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1. INTRODUCTION

Control of fermentation processes is a problematic which
has been intensively studied during the last decades.
The complexity of biological underlying phenomena make
this problematic tricky due to strong nonlinearity and
uncertainties of the models.

Various approaches have been developped; some are based
on predictive quality of the models Winkin et al. [2009],
Moya et al. [2002], Peroni et al. [2005], Rani and Rao
[1999]; others are mainly based on fuzzy networks Ronen
et al. [2002], Zhihua and Jie [2002].

In this paper, we show how operatorial transformations,
viewed as function of trajectories, can be used to signifi-
cantly simplify the problem of control of fed-batch biore-
actors. We first define the suitable framework for those
transformations. Then, the time-scale transformations are
introduced and a simple and efficient strategy for decou-
pling state/input components is stated. In the third sec-
tion, we define the operatorial parametrizing of dynamic
systems and problems. Finally, those transformations are
applied in the last section to control a class of fed-batch
bioreactors models.

2. OPERATORIAL TRANSFORMATIONS

We summarize in this section some basic notions used in
the sequel. We namely propose an abstract formulation
of dynamic problems, well adapted to the problematic of
operatorial transformations, in a generic framework.

We call trajectory any function x defined on a time interval
[0, T ] with values in a topological vector (usually Banach)
space X.

We consider dynamic problems of the abstract form:{
Φ(u, x) = 0
P(u, x) = 0,

(u, x) ∈ U × X , (1)

whereΦ = 0 is a dynamic model supposed to be well-posed

and P is a “property”that would be satisfied by (u, x), with
the convention: 0 ∼True and 1 ∼False 1 .

This abstract formulation can include most of classical
dynamic problems encountered in practice, such as esti-
mation, identification Casenave [2010], control, analysis,
numerical simulation etc. Montseny [2009].

Example 1. Classical differential systems:{
∂tX = f(u, x), t ∈]0, T [

x(0) = x0,
(2)

are of the form Φ(u, x) = 0 with:

Φ : =

(
∂t − f(u, x)
< δ, · > −x0

)
, (3)

where < δ, · > is the Dirac operator v 7→ v(0). Manifolds
U and X must be adapted to the problem, for example
U ⊂ L∞(0, T ), X ⊂ C0([0, T ]).

Then, we call operatorial transformation any operator that
transforms a problem (Φ,P) = 0 on U × X into a “new”

problem (Φ̃, P̃) = 0 on Ũ × X̃ , such that:

Φ̃(ũ, x̃) = 0 ⇒ Φ(u, x) = 0, (4)

that is the solution of the initial problem is deduced from
the solution of the “new” problem.

3. TIME-SCALE TRANSFORMATIONS

There exists many examples of dynamic systems for which
it can be defined an intrinsic clock, under which the dy-
namic equations are greatly simplified (see for example
Fangtang and Kelkari [2003], Bliman and Sorine [1996]).
A generic formulation of such “time-scale transformations
”(TST) reveals several interesting properties. We only give
here some essential results relating to those transforma-
tions; more properties, results and extensions can be found
in Montseny [2010, 2009].

1 Namely, the property P could have the expression J(u, x) = 0 with
J a continuous operator, or J (u, x) = min with J a cost functional.



In the following, X is a Banach space and X a suitable
space of trajectories with values in X, and ∂−1

t denotes

the integration operator: u 7→
∫ t

0 u.

The symbol (·)′ represents the differentiation operation.

3.1 Definitions and properties

Basically, a TST is a trajectorial transformation of the
form x 7→ x ◦ ϕ−1 where the strictly increasing 2 function
ϕ(t) defines a new time-scale τ := ϕ(t).

Definition 2. The TST operator S on X is by:

(x, ϕ) 7→ S(x, ϕ) := x ◦ ϕ−1. (5)

For convenience, we denote:

◮ Sϕ := S(·, ϕ).
◮ τ := ϕ(t) the “new time” and x̃ the so-transformed

trajectory x, that is:

x̃ := Sϕ(x) = x ◦ ϕ−1.

The inversion of a time-scale transformation, essential to
keep equivalence of models, is simply given by the relation:

S
−1

ϕ = Sϕ−1 .

Definition 3. A time-scale-transformation is said dynamic
if the clock ϕ is the result of a dynamic transformation of
a function v, that is ϕ = ϕ(v) with ϕ a causal operator
on a manifold V (of trajectories), such that ∀v ∈ V , ϕ(v)
is continuous and strictly increasing.

We denote Sϕ the operatorial function:

Sϕ : v 7→ Sϕ(v).

Remark 4. A dynamic time-scale transformation can be
applied on the trajectory v itself :

ṽ = Sϕ(v) (v) = v ◦ϕ(v)−1.

Note that because the operator ϕ is causal, this expression
will be compatible with real time applications.

An important example of causal dynamic TST operator
is given by ϕ = ∂−1

t . In particular, we have the following
proposition, on which is based the singularity simplifica-
tion detailed on the next paragraph.

Proposition 5. Let g a continuous and strictly positive
function and x differentiable. Then:

S∂−1

t
1

g
(g x′ ) = [S∂−1

t
1

g
(x)]′. (6)

Roughly speaking:

S∂−1

t
1

g
: g ∂t 7→ ∂τ . (7)

Proof. We denote ϕ := ∂−1
t

1
g
. Using the chain rule, we

have:

Sϕ (g x′) = Sϕ (g) Sϕ (x′) = g̃ ϕ̃′ x̃
′

= g̃
1

g̃
x̃

′

= x̃
′

.

�

Note that g that can be any function of time, for exemple
of the form G(t, u, x).

2 However, the use of non invertible time-scale transformations is not
excluded, namelly when dealing with models involving dry friction,
see for example Montseny [2009].

3.2 Decoupling of state/input components in dynamical
models

Transformation of differential models We consider an
abstract dynamic model of the form:

Φ(u, x, g ∂tx) = 0, (8)

with g a continuous and stricly positive function.

Corollary 6. By the time-scale transformation S∂−1

t
1

g
,

equation (8) is transformed into:

Φ(ũ, x̃, ∂τ x̃) = 0, (9)

the correspondence between τ and t being indifferently
defined by ∂tτ = 1

g
or ∂τ t = g̃.

Thus, a suitable TST transforms a first order differential
equation g ∂tx = F (u, x) into the following time-invariant
differential equation:

∂τ x̃ = F (ũ, x̃).

In other words, such transformation allow to suppress
some undesirable terms of a model by “absorbing” them
into the new time derivative operator ∂τ . Then, the resolu-
tion of dynamic problems on such models can be simplified.

Decoupling of state/input components Let us consider
the model:

∂tx = f(x) + g(u)h(x) (10)

with h(x) a positive function. Then, thanks to proposition

6, the dynamic time-scale transformation S∂−1

t h(x) leads to

the model:

∂τ X̃ =
f(x̃)

h(x̃)
+ g (ũ) , (11)

the correspondance between τ et t being indifferently

defined by ∂tτ = h(x) or ∂τ t =
1

h (x̃)
. The system (11)

(in time τ) presents the advantage to have an additive
and decoupled input g (ũ).

The same transformation can of course be operated on g(u)
(if g is a positive function), to isolate the term h(x) by
using the time-scale transformation ∂−1

t (g(u)). This has
been used for the problem of bioreactor control presented
in section 5. Another application of decoupling by dynamic
TST can be found in Montseny and Camon [2010].

Remark 7. The above results can be extended to nonlocal
dynamic models Montseny [2009].

Remark 8. Decoupling of state/input components is not
the only simplificiations brought by proposition 6. We
can for example mention the desingularization of nonlocal
dynamic models of the form:

H(∂t)x =
1

h(t, u, x)
F (t, u, x),

with h(t, u, x) close to zero, or even the transformation of
differential inclusions into classical differential equations.
One can refer to Montseny [2010, 2009] for some applica-
tions.

4. OPERATORIAL PARAMETRIZING OF DYNAMIC
PROBLEMS

We recall the abstract expression of dynamic problems on
U × X :



Φ(u, x) = 0 (12a)

P(u, x) = 0. (12b)

In a synthetic way, the aim of parametrizing is to express
solutions of the model Φ(u, x) = 0 from a quantity y
with a relation of the form (u, x) = Q(y). Many works
are related to this problematic Jakubvzyk and Respondek
[1980], Fujimoto and Sugie [1996]. Other works focused
on algebraic properties of the problem in a general formal
framework for linear models Chyzak and Robertz [2005];
the specific case of linear partial differential equations were
studied in Nihtila et al. [2004].

In this work, we deal with “operatorial”parametrizations,
which are globally defined as operators on trajectorial
manifolds.

4.1 Parametrizing

In the sequel, we denote Z := U × X , z := (u, x) and
E ⊂ U × X the (trajectory) manifold of solutions of the
dynamic model (12a).

Definition 9. We call parametrizing of (12a) a manifold Y
and a continuous operator Q : Y → Z such that:

∀y ∈ Y, z = Q(y) ⇒ Φ(z) = 0, (13)

that is Q(y) is solution of (12a).

The trajectory y is called parameter.

Remark 10. The continuity of operators involved in the
parametrization process is essential to ensure the practi-
cability of the method and their robustness towards noise
and errors.

Then, a parametrizing appear to be a correspondence
between solutions of the model (12a) and elements of
a manifold Y, leading to a transformation of the whole
dynamic problem (12) into:

P̃(y) := P(Q(y)) = 0, y ∈ Y, (14)

this new problem being equivalent 3 to (12).

The operator Q allow to deduce, from solution y∗ of
(14), the related couple (u∗, x∗) solution of (12), without
solving the equation (12a); in other words, the manifold
“summerizes ”the dynamic model (12a), which is no longer
necessary to solve for the resolution of the global dynamic
problem.

A parametrizing will be especially interesting when the
effective resolution of (14) is simpler than the resolution
of the initial problem (12).

4.2 Parametric output operators

In practice, a parametrizing is often built by “exctracting”
the parameter y from the model Φ(u, x) = 0, as a function
of u et x. This is the aim the following definition.

Definition 11. We call parametric output operator of (12a)
a continuous application A : U ×X → Y such that A|E is
an homeomorphism.

3 When all solutions of Φ = 0 are parameterized; if not, that means
that we have (14) ⇒ (12): the new problem have less solutions than
P = 0.

From this point of view, y is called parametric output of
the model.

We have:

Proposition 12. If A is a parametric output operator of

(12a), then (A|
−1

E ,Y) is a parametrizing of (12a).

Proof. If (A,Y) is a parametric output operator of (12a),
then by definition, A|E is an homeomorphism between E
and Y; so, its inverse is a parametrizing. �

We denote (B,C) := A|
−1

E
the parametrizing operator

defined by a parametric output operatorA. We can remark
that the relation (u, x) = (B(y),C(y)) is composed from
two decoupled equations, one between the parameter y and
the state x, and the other between y and input u. In that
sense the (dynamic) equation

x = C(y) (15)

can be interpreted as a new (solved) model with input y
on which dynamic problems mainly related to the state
can by posed (e.g. control problems).

4.3 Parametric equations

It can be usefull (as for example in section 5) to consider
a weaker definition of parametrizing, which will not be
explicit (i.e. solved) like z = Q(y) in definition 9, but
implicit. This is the aim of the following definition.

Definition 13. Let Y be a manifold, P a vector topological
space and Ψ : Y × Z → P an operator. The equation in
Y × Z:

Ψ(y, z) = 0, (16)

is said parametric equation for (12a) if:

∀ (y, z) ∈ Y × Z, Ψ(y, z) = 0 ⇒ Φ(z) = 0. (17)

Thus, a parametric equation implicitly defines a parametriz-
ing (Q,Y). The parametric equation can be interpreted as
a new model of input y and state z = (u, x); in that sense,
this is a state augmentation.

The following proposition is usefull for practical con-
struction of parametrizing. It states that if we know a
parametrizing of a model, then we can easily access to a
parametrizing of any homeomorphic transformation of the
model; this property will be in particular used in section 5.

Proposition 14. Let Ψ = 0 be a parametric equation for
(12a), and S : Z → Z̃ an homeomorphic transformation.

Then, with Ψ̃(y, z̃) := Ψ(y,S−1(z̃)), Ψ̃ = 0 is a parametric

equation for the model Φ̃(z̃) := Φ ◦ S−1(z̃) = 0.

With (Q,Y) the parametrizing implicitly defined by Ψ =

0, the parametrizing defined by Ψ̃ = 0 is (S ◦Q,Y).

Proof. We have:

∀ (y, z̃) ∈ Y × Z̃, Ψ̃(y, z̃) = 0 ⇔ Ψ(y,S−1(z̃)︸ ︷︷ ︸)
∈Z

= 0

As Ψ = 0 is a parametric equation for Φ = 0, this implies
Φ(S−1(z̃)) = 0, that is Φ̃ = 0. So, Ψ̃ = 0 is a parametric

equation for Φ̃ = 0.

The same reasoning applies to the parametrizing. �



5. APPLICATION TO CONTROL OF A FED-BATCH
BIOREACTOR MODEL

5.1 Parameterization of the bioreactor model

We consider the following model of fed-batch bioreactors
Wang et al. [2001]:





∂tx = µ(X)x− xu

∂ts = −a1µ(X)x+ (si − s)u

∂tp = a2µ(X)x− p u

X(0) = X0,

(18)

where x, s, p are the respective concentrations of biomass,
substrate and product,X = (x, s, p)T , µ is the growth rate,
si the substrate concentration in feed, u (the control) is the
dilution of feed and X0 the initial conditions.

Time-scale transformation of the model The model (18)
is of the form (10), with u > 0. Then, using results of
paragraph 3.2, we know that the dynamic TST S∂−1

t u

transforms the model (18) into the following model in time
τ : 




∂τ x̃ = −x̃+ µ(X̃) x̃

ũ

∂τ s̃ = −s̃+ si − a1
µ(X̃) x̃

ũ

∂τ p̃ = −p̃+ a2
µ(X̃) x̃

ũ

X̃(0) = X0,

(19)

the correspondance between τ and t being defined by ∂tτ =
u or ∂τ t =

1

ũ
.

Parametric equation for the model The model (19)
suggests the definition of the following parametric output:

y = A(ũ, X̃) := (µ(X̃)x̃

ũ
, (x0, s0, p0))

T ∈ Y = Y1 ×DCI

(20)
where Y1 = {f ∈ L∞ (I) ; f > 0} and DCI ⊂ R

3 is the
admissibility domain of initial conditions.

Indeed, the operator A is continuous and defines a
parametrizing of (19) via the parametric equation:





∂τ x̃ = −x̃+ y1
∂τ s̃ = −s̃+ si − a1y1
∂τ p̃ = −p̃+ a2y1

y = A(ũ, X̃);

(21)

one can easily verify that if ∀y ∈ Y, (u,X0, X, y) is solu-
tion of (21) then (u,X0, X) issolution of (19). Then, the
resolution of (21) leads to the following explicit expression
of the parametrizing operator Q = (B,C) of (19):





x̃ = C1(y) := (∂τ + 1)
−1

(y1) + y2 e
−(·)

s̃ = C2(y) := (∂τ + 1)−1 (si − a1y1) + y3 e
−(·)

p̃ = C3(y) := (∂τ + 1)
−1

(a2y1) + y4 e
−(·)

(ũ, X0) = B(y) :=
(

µ(C(y))C1(y)
y1

, y2, y3, y4

)
.

(22)

Finally, using the results of proposition 14, we know that

(S
−1

∂
−1

t
u

◦Q ,Y) defines a parametric equation of the model

(18) (in time t):

(X,u) = S
−1

∂
−1

t
u

◦ (C,B)

that is:



x =
[
(∂τ + 1)

−1
(y1) + y2 e

−(·)
]
◦ ∂−1

t u

s =
[
(∂τ + 1)−1 (si − a1y1) + y3 e

−(·)
]
◦ ∂−1

t u

p =
[
(∂τ + 1)

−1
(a2y1) + y4 e

−(·)
]
◦ ∂−1

t u

(u,X0) =
(

µ(C(y))C1(y)
y1

◦ ∂−1
t u , y2, y3, y4

)
.

(23)

We can see that the parametric equation (21) contains
in particular a system of linear and decoupled differential
equations between the state x̃ and the parameter y, which
is the input of this new model. Then, controls problem
can be investigated on those equivalent states equations
using classical control techniques of linear systems, and
solutions (u,X) of the initial nonlinear model will then be
easily deduced from the relation (23).

y X~Bioreactor

N.L.S.

u X

linear system

∂  uS
t
-1

-1

 B∂  uS
t
-1

Fig. 1. parametrizing of the nonlinear model.

5.2 Control of the parameterized model

Biomass control Thanks to the decoupled and lin-
ear structure of the parametric equation, control of the
biomass equation: {

∂τ x̃ = −x̃+ y1
x̃ (0) = x0,

. (24)

can be easily processed with a classical corrector of
proportionnal-integral type:

K(p) =
(
1 + 1

Ti p

)
K. (25)

We then deduce the related nonlinear dynamic corrector
decribed by. fig.2.

ε+

-

y Bioreactor

N.L.S.

u xcx
∂  uS
t
-1

-1

 B∂  uS
t
-1K(p)~

nonlinear corrector

Fig. 2. Controller on the nonlinear system.

We give in fig. 3 an example of control of the biomass for
two different profiles of biomass. The input and parameters
are: a1 = 14.3, a2 = 6.25, pi = 100 g. l−1, Ks = 0.5 g. l−1,

si = 50 g. l−1, µ = µmax
s

ks+s

(
1− p

pi

)
, µmax = 0.54. We

can see that the biomass follows the reference.

Moreover, as previously said, the parametrizing has been
made independently of the specific growth rate µ(X);
consequently, the control strategy is still valid for any
expression of the growth rate. As an illustration, we give
in fig. 4 an example of biomass control obtained with the
specific growth rate of Monod (Monod [1942]), given by:

µ(X) = µmax

s

ks + s
.
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Fig. 3. Control of the biomass for two different profiles.
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Fig. 4. Control of the biomass with a growth rate of Monod
type.

Substrate and product control As the structure of equa-
tions governing the substrate s and the product p are
similar to the biomass one, we can control those quantities
in the same way than the biomass. Indeed, by denoting

S̃ := s̃− si, we have the equations:{
∂τ S̃ = −S̃ − a1y1

S̃ (0) = s0 − si
and

{
∂τ p̃ = −p̃+ a2y1

p̃ (0) = p0,

which have the same dynamic than (24); consequently,
thay can be controlled with the respective correctors
−a1K(p) and a2K(p), where K(p) is the controller defined
by (25).

We give on fig. 5 and exemple of control of substrate and
product.
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Fig. 5. Substrate (left) and Product (right) control.

Robustness to measurement noise We focus in this para-
graph on the robustness of the control strategy to measure-
ment noise. Then, we add to the measure a colored noised,
obtained by filtering a blank noise of parameter σ with a
first order filter of transfert function:

F (p) =
am

p+ am

Similarly, a filter of the form au

p+au
can be used if the

computed control is too rough. We give in fig. 6 the results
obtained with noisy measurement: the control is still good
in spite of the noise.
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Fig. 6. Control of the biomass with noise parameters
σ = 0.1 and am = 200, and with a command filter
of parameter au = 20.

Perturbations robustness and compensation The pro-
posed controler is robust to perturbations, as shown on
fig. 7:
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Fig. 7. Biomass control in presence of a perturbation
∆x = −0.1 at tp = 2h.

Remark 15. 1n error on initial condition can be seen as a
perturbation at t = 0; so, the controller is also robust to
initial condition errors.

The control strategy can be enhenced by adding a pertur-
bation compensation in the parametrizing of the model.

Indeed, we can see on fig. 8 that the reconstitution S
−1

∂−1

t u
◦

C(y) differs from the state X after the pertrubation. We
can express this difference by considering a perturbation at
time tp, modeled by a term αδtp , α > 0, in the biomass 4

equation (the other equations are unchanged):
{
∂t x = µ(X)x− u x+ αδtp

...

4 The same reasoning can of course be made for substrate or product
perturbations.



Then, using the TST S∂−1

t u and noting that S∂−1

t u

(
αδtp

)
=

αu(tp) δτp
, we get from simple computations the following

parametrizing of the model after the perturbation:

x̃= (∂τ + 1)−1 (y1) + y2 e
−(·) + u(tp)α (∂τ + 1)−1

(
1

ũ
δτp

)

=C1(y) + αeτ0−· Y (· − τp) , (26)

where Y is the Heaviside function (the other equations are
similar to (22)). Thus, a perturbation can analytically be
taken into account by adding the term αeτ0−τ Y (τ − τp)
into the parametrization of x̃. In practice, the perturbation
is detected by a brutal variation of x̃−C1(y).

We give on fig. 8 an example of compensation of perturba-
tion and its benefits on the parametrizing operator C(y)
accuracy.
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Fig. 8. Compensation of biomass perturbation.

6. CONCLUSION

The present paper must be seen as a brief introduction
to a methodology based on operatorial transformations
and devoted to nonlinear dynamic problems. The time-
scale transformations were introduced and their interest in
terms of decoupling was stated. Operatorial parametriza-
tion and some extensions such as parametric output and
parametric equations were then introduced.

It has been shown on fed-batch bioreactor models that, in
spite of some apparent complexity, efficient solutions can
be found by using those operatorial transformations.

The obtained formulations allow to envisage practical
implementation or even extensions, for exemple to the
following class of bioreactor models:




∂t x = G(X)− f(x) k(u)
∂t s = −a1G(X) + g(si − s) k(u)

∂t p = a2G(X)− h(p) k(u)

X(0) = X0,

which can be transformed in the same way by TST and
parametrizing Montseny [2009].
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